

Determination of Gravity Potential Differences and Height Systems for Survey Control on KNUST Campus, Ghana

Tangwam Moses^{1*} and Bismark Kotoko²

^{1,2} Department of Geomatic Engineering, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana

Abstract

Traditional spirit leveling remains the primary method for establishing height control in engineering and geodetic work. However, its results are affected by the specific path taken and are not purely determined by physics. Heights obtained solely through geometric leveling depend on the chosen route and cannot be directly integrated into global or regional height systems based on gravity potential. This study measures gravity potential differences between survey control stations on the KNUST campus in Kumasi, Ghana, and calculates orthometric, dynamic, and normal heights in accordance with physical height theory. Precise leveling was carried out among 16 existing control stations using a digital level and invar bar-coded staff. At the midpoint of each segment, ground gravity measurements were taken with a LaCoste & Romberg G-944 gravimeter. These gravity data were corrected for drift and tides using Geosoft, and geopotential numbers were computed from the segment height differences and average gravity values. From these geopotential numbers, orthometric, dynamic, and normal heights were derived for all stations. The results confirm that leveled heights are not unique and demonstrate that geopotential numbers offer a path-independent method to define height on campus. This study presents a practical approach to improve gravity-based vertical control in a local network, providing a foundation for future integration into national and global height systems.

Keywords: gravity potential, geopotential number, orthometric height, dynamic height, normal height, precise levelling, gravimetry, KNUST.

1. Introduction

Height information supports engineering design, construction, drainage, flood risk assessment, and geodetic positioning. Traditionally, vertical control has been based on spirit leveling referenced to a local mean sea level datum. Though precise leveling can achieve millimeter-level internal accuracy, the resulting orthometric heights are not physically unique: repeating a leveling loop along different paths generally yields slightly different heights for the same point because the method ignores spatial variations in gravity along the leveling route.

In physical geodesy, the fundamental quantity is not height but gravity potential. The Earth's gravity field can be described by gravity potential W , which is the sum of gravitational and centrifugal

*Corresponding Author Email: mtangwam@mtu.edu

Published: 29/11/2025

DOI: <https://doi.org/10.70558/IJST.2025.v2.i4.241134>

Copyright: © 2025 The Author(s). This work is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0).

potentials. Surfaces of constant potential—equipotential surfaces—are everywhere perpendicular to the direction of the plumb line. The geoid is one such equipotential surface that approximates global mean sea level (Moritz & Hofmann-Wellenhof, 2005). The difference in gravity potential between the geoid and a point P is expressed as the geopotential number $C_P = W_0 - W_P$, where W_0 is the potential at the geoid and W_P is the potential at point P. Geopotential numbers are path-independent and offer a natural way to define height. Various height systems, including orthometric, dynamic, and normal heights, can be derived from geopotential numbers by appropriate scaling with gravity or normal gravity (Jekeli, 200).

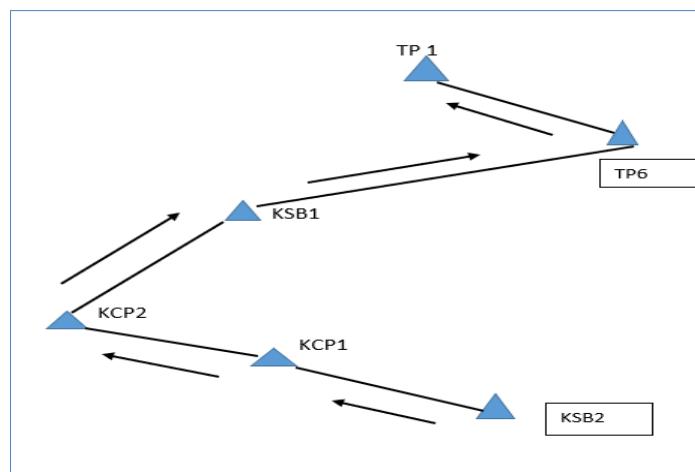
In Ghana, as in many countries, routine engineering surveys still rely heavily on classical leveling with limited integration of gravity information. On the KNUST campus in Kumasi, several control points exist with conventional heights, but their relationship to the gravity field has not been thoroughly investigated. Establishing geopotential numbers and gravity-consistent heights for these stations would enhance the physical significance of local height control and serve as a foundation for future geodetic integration.

This paper presents a campus-scale case study where gravity potential differences among existing survey stations are determined using precise leveling and relative gravimetry. The specific objectives are: (1) to measure precise height differences between selected control stations on KNUST campus; (2) to observe ground gravity at midpoints along the leveling routes and derive mean gravity values; (3) to compute gravity potential differences and geopotential numbers for the stations; and (4) to derive orthometric, dynamic, and normal heights and evaluate the limitations of traditional level heights.

2. Theoretical Background

For practical purposes, the geopotential number between the geoid and a point P can be calculated through line integrals of gravity along a leveling path: $C_P = \int_0^H g \, dh \approx \sum g_i \Delta h_i$, where g_i is the gravity at the i-th instrument station, Δh_i is the corresponding height difference obtained from leveling, and the sum is taken along the plumb line between the geoid and P. In practice, g_i is estimated using gravimeter readings at surface points along the leveling line (Lee et al, 2010). Because C_P is defined solely by potential differences, it does not depend on the specific leveling route, unlike traditional orthometric height differences. Geopotential numbers are typically expressed in geopotential units (g.p.u.), where 1 g.p.u. = 1 kgal m = 1000 gal m. With standard gravity near 0.98 kgal, the numerical values of C in g.p.u. are close to orthometric heights measured in meters.

From geopotential numbers, multiple height systems can be derived. Dynamic height is given by $H_D = C / \bar{g}_0$, where \bar{g}_0 is a representative normal gravity value on a reference ellipsoid. Orthometric height is $H_O = C / \bar{g}$, where \bar{g} is the average actual gravity along the plumb line between the geoid and point P. Normal height is $H_N = C / \bar{\gamma}$, where $\bar{\gamma}$ is the average normal gravity along the corresponding normal plumb line within a reference ellipsoid. The selection of a height system depends on the specific application and available data, but in all cases, the fundamental variable is the geopotential number.


3. Study Area and Data

The study was carried out on the main campus of Kwame Nkrumah University of Science and Technology (KNUST) in Kumasi, Ghana. The campus includes academic buildings, residential

facilities, and road networks with moderate elevation. Existing survey control points established by the Department of Geomatic Engineering and partners are spread across the campus, including stations labeled KSB1, KSB2, KCP1, KCP2, SGA1–SGA13, and temporary turning points TP1 and TP6. These stations form a closed network with a total leveling distance of about 3.8 km and have traditional heights from previous surveys. The equipment used included a digital level with an Invar bar-coded staff for accurate leveling, a LaCoste & Romberg G-944 relative gravimeter; change plates and a tripod; a measuring tape, thermometer, and umbrella; and Geosoft software for gravity data reduction and analysis.

4. Methods

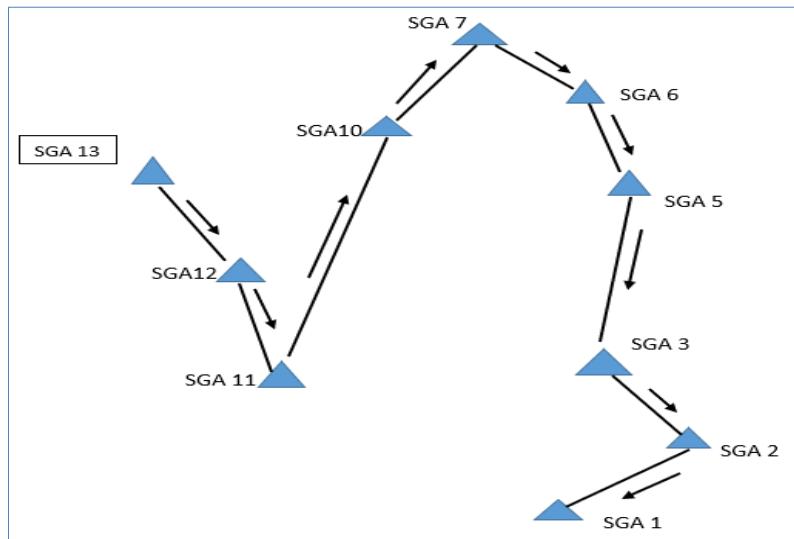

Network reconnaissance identified all existing control points suitable for precise leveling and gravity observations. Stations were inspected for stability, accessibility, and clear lines of sight. The final network consisted of 16 control points connected by two leveling laps, as shown in figures 1 and 3: Lap 1 (KSB2 – KCP1 – KCP2 – KSB1 – TP6 – TP1 – TP6 – KSB2) and Lap 2 (SGA1 – SGA2 – SGA3 – SGA5 – SGA6 – SGA7 – SGA10 – SGA11 – SGA12 – SGA13 – TP1 – TP6 – KSB1 – KCP2 – KCP1 – KSB2).

Figure 1 Survey Diagram (Lap 1) and Direction of Levelling(1.7km)

Figure 2 Lacoste and Rombergs Gravimeter

Figure 3 Survey Diagram (Lap 2) and Direction of Levelling(2.1km)

Precise levelling followed first-order procedures with balanced backsight and foresight distances, short sight lengths, and two-way runs under different meteorological conditions. A two-peg test was performed to determine and correct residual collimation error. Height differences were determined using the rise-and-fall method and loop misclosures were checked against allowable tolerances.

Relative gravity measurements were made at the midpoints of each levelling segment using the L&R G-944 gravimeter (figure 3). The survey commenced and ended at a base station; base gravity was approximated using a theoretical normal gravity formula. Drift and tidal corrections were applied in Geosoft, and closure adjustments enforced consistency. For each levelling segment between stations A and B, the change in height Δh and the mean gravity g_m at the segment midpoint were known. Gravity potential differences were computed as $\Delta W_{AB} = - g_m \Delta h$. Summation of segment contributions along a path from a reference station yielded geopotential numbers for all stations, from which orthometric, dynamic and normal heights were derived.

Table 1 and 2 show raw gravity readings and converted gravity readings in milligals respectively. Calibration Table for G-944 was used to convert the raw gravity readings into gravity readings in milligals.

Table 1 Raw Gravity Readings from Field

Surveyed By: Moses Tangwam				
Project: KNUST Ground Gravity - Ghana				
DGPS: Sokia / Gravity Meter: L&R G944				
Station ID	Date YY/MM/DD	Time (Hrs Mins)	Gravity	Repeat
SGA1_SGA2(Base)	150320	1337	1673.68	

SGA2_SGA3	150320	1349	1674.73	
SGA3_SGA5	150320	1408	1675.11	
SGA5_SGA6	150320	1417	1674.20	
SGA6_SGA7	150320	1426	1673.95	
SGA7_SGA10	150320	1437	1672.48	
SGA10_SGA11	150320	1444	1670.00	
SGA11_SGA12	150320	1457	1670.29	
SGA12_SGA13	150320	1504	1669.78	
SGA1_SGA2	150320	1516	1673.84	Yes
TP1_TP6	150320	1525	1671.37	
TP6_KSB1	150320	1534	1673.69	
KSB1_KCP2	150320	1542	1674.42	
KCP2_KCP1	150320	1549	1674.11	
KCP1_KSB2	150320	1557	1673.20	
TP1_TP6	150320	1608	1671.41	Yes
SGA1_SGA2	150320	1616	1673.90	Yes

Table 2 Raw Gravity Readings in Milligals

Surveyed By: Moses Tangwam									
Project: KNUST Ground Gravity – Ghana									
DGPS: Sokia / Gravity Meter: L&R G944									
									Gravity
Station ID	Date	Time	Gravity						Readings
									(mgal)
SGA1_SGA2(Base)	150320	1337	1673.68	1600.00	73.68	1.03028	75.91	1649.52	1725.43
SGA2_SGA3	150320	1349	1674.73	1600.00	74.73	1.03028	76.99	1649.52	1726.51
SGA3_SGA5	150320	1408	1675.11	1600.00	75.11	1.03028	77.38	1649.52	1726.90

SGA5_SGA6	150320	1417	1674.20	1600.00	74.20	1.03028	76.45	1649.52	1725.97
SGA6_SGA7	150320	1426	1673.95	1600.00	73.95	1.03028	76.19	1649.52	1725.71
SGA7_SGA10	150320	1437	1672.48	1600.00	72.48	1.03028	74.67	1649.52	1724.19
SGA10_SGA11	150320	1444	1670.00	1600.00	70.00	1.03028	72.12	1649.52	1721.64
SGA11_SGA12	150320	1457	1670.29	1600.00	70.29	1.03028	72.42	1649.52	1721.94
SGA12_SGA13	150320	1504	1669.78	1600.00	69.78	1.03028	71.89	1649.52	1721.41
SGA1_SGA2	150320	1516	1673.84	1600.00	73.84	1.03028	76.08	1649.52	1725.60
TP1_TP6	150320	1525	1671.37	1600.00	71.37	1.03028	73.53	1649.52	1723.05
TP6_KSB1	150320	1534	1673.69	1600.00	73.69	1.03028	75.92	1649.52	1725.44
KSB1_KCP2	150320	1542	1674.42	1600.00	74.42	1.03028	76.67	1649.52	1726.19
KCP2_KCP1	150320	1549	1674.11	1600.00	74.11	1.03028	76.35	1649.52	1725.87
KCP1_KSB2	150320	1557	1673.20	1600.00	73.20	1.03028	75.42	1649.52	1724.94
TP1_TP6	150320	1608	1671.41	1600.00	71.41	1.03028	73.57	1649.52	1723.09
SGA1_SGA2	150320	1616	1673.90	1600.00	73.90	1.03028	76.14	1649.52	1725.66

After converting the raw gravity readings into milligals, we then used Geosoft to process the data by applying the necessary corrections. Table 3 shows the processed gravity data.

Table 3 Processed gravity Data

Station	Time	Reading	Longitude	Latitude	Gravity(mgal)	TideCorr	Closure
SGA1_SGA2(Base)	13:37:00	1725.43	1.34.17.70	6.40.30.60	978102.174	0.1687	0
SGA2_SGA3	13:49:00	1726.51			978103.236	0.1563	*
SGA3_SGA5	14:08:00	1726.9			978103.596	0.1346	*
SGA5_SGA6	14:17:00	1725.97			978102.65	0.1235	*
SGA6_SGA7	14:26:00	1725.71			978102.375	0.112	*
SGA7_SGA10	14:37:00	1724.19			978100.835	0.0976	*
SGA10_SGA11	14:44:00	1721.64			978098.273	0.0882	*
SGA11_SGA12	14:57:00	1721.94			978098.549	0.0704	*
SGA12_SGA13	15:04:00	1721.41			978098.006	0.0607	*
SGA1_SGA2	15:16:00	1725.6	1.34.17.70	6.40.30.60	978102.174	0.0442	0.045

TP1_TP6	15:25:00	1723.05			978099.614	0.0318	*
TP6_KSB1	15:34:00	1725.44			978101.995	0.0196	*
KSB1_KCP2	15:42:00	1726.19			978102.736	0.0089	*
KCP2_KCP1	15:49:00	1725.87			978102.409	-0.0003	*
KCP1_KSB2	15:57:00	1724.94			978101.471	-0.0105	*
TP1_TP6	16:08:00	1723.09			978099.611	-0.0241	*
SGA1_SGA2	16:16:00	1725.66	1.34.17.70	6.40.30.60	978102.174	-0.0335	-0.018

5. Results

Conventional height levels for the main control stations typically span around 25 meters vertically across the network, and leveling misclosures remain within acceptable limits, indicating good internal consistency. Processed gravity values at the leveling midpoints range from approximately 978098 to 978103 mGal, showing modest variation throughout the campus. The largest potential differences occur along the steep section between SGA7 and SGA10. Using SGA1 as the reference, geopotential numbers are propagated through the network as shown in table 4. Orthometric heights derived from these geopotential numbers slightly differ from heights obtained through purely leveled methods, especially around loops where leveling paths diverge. This illustrates the non-uniqueness of classical orthometric heights and the path-independent property of heights based on geopotential.

Table 4 Gravity potential differences calculated from processed gravity values and levelled height differences.

Line	ΔH (m)	Mid-gravity (mGal)	No. of instrument stations	ΔC (g.p.u.)
SGA1_SGA2	-12.422	978102.174	6	-12.150
SGA2_SGA3	3.386	978103.236	3	3.312
SGA3_SGA5	1.148	978103.596	6	1.123
SGA5_SGA6	-0.008	978102.650	3	-0.008
SGA6_SGA7	2.527	978102.375	2	2.472
SGA7_SGA10	20.986	978100.835	14	20.526
SGA10_SGA11	-4.196	978098.273	3	-4.104
SGA11_SGA12	2.112	978098.549	1	2.066
SGA12_SGA13	-0.109	978098.006	1	-0.107

TP1_TP6	1.044	978099.614	1	1.021
TP6_KSB1	-14.339	978101.995	15	-14.025
KSB1_KCP2	1.402	978102.736	1	1.371
KCP2_KCP1	2.383	978102.409	1	2.331
KCP1_KSB2	5.695	978101.471	4	5.570

5.1 Units and conversions

Gravity values measured by the LaCoste & Romberg G-944 gravimeter are recorded in “scale units”, which were converted to gravity in Gal and subsequently to milligals (mGal). One Gal is defined as 0.01 m/s^2 , so that $1 \text{ mGal} = 10^{-5} \text{ m/s}^2$. In this study, all processed gravity values are expressed in mGal.

Geopotential numbers and potential differences are expressed in geopotential units (g.p.u.). One g.p.u. is defined as $10 \text{ m}^2/\text{s}^2$. For small height differences between two nearby points A and B, the geopotential difference is approximated by

$$\Delta C = \frac{\bar{g} \Delta H}{10},$$

where \bar{g} is the mean gravity along the segment (in m/s^2) and ΔH is the height difference in meters. Using mGal instead of m/s^2 , this becomes

$$\Delta C [\text{g.p.u.}] = \bar{g} [\text{mGal}] \times \Delta H [\text{m}] \times 10^{-6}.$$

As a numerical example, consider the segment SGA1–SGA2, which has a height difference $\Delta H = -12.422 \text{ m}$ and a mid-segment gravity of $\bar{g} = 978102.174 \text{ mGal}$. Converting gravity to m/s^2 gives

$$\bar{g} = 978102.174 \times 10^{-5} = 9.78102174 \text{ m/s}^2$$

The corresponding geopotential difference in g.p.u. is

$$\Delta C = \bar{g} \Delta H / 10 = 9.78102174 \times (-12.422) / 10 = -12.15 \text{ g.p.u.}$$

Using the mGal form of the equation gives the same result:

$$\Delta C = 978102.174 \times (-12.422) \times 10^{-6} = -12.15 \text{ g.p.u.}$$

All entries in Table 4 were calculated using this relationship.

5.2 Error and uncertainty analysis

Several sources of error affect the derived geopotential numbers and heights. The most important are levelling misclosure, gravimeter drift and tidal corrections, and gravimeter scale calibration.

Levelling misclosure: Each levelling loop was constrained such that the misclosure did not exceed the first-order tolerance of $\pm k\sqrt{L}$ mm, where L is the loop length in kilometres. For the KNUST network (maximum loop length = 2.1 km), the observed misclosures were within ± 20 mm. When distributed by least-squares adjustment, the resulting uncertainty in height difference between adjacent control points is on the order of 0.2 mm, which translates into less than 0.1 g.p.u. in the corresponding geopotential numbers.

Gravimeter drift and tidal corrections: The LaCoste & Romberg G-944 readings were adjusted for instrumental drift through repeated measurements at the base station and for solid Earth tides using standard tidal models. The residual uncertainty in the corrected gravity values is estimated at about ± 0.02 – 0.05 mGal, based on repeat measurements. For a typical campus-scale height difference of 10–20 m, this amounts to an uncertainty in geopotential difference of less than ± 0.01 g.p.u., or roughly ± 1 mm in the derived orthometric height.

Calibration uncertainty: The gravimeter scale factor was checked against known gravity differences in the local calibration range. A conservative estimate of the calibration uncertainty is 0.05%. For the observed gravity variations, this contributes at most a few tenths of a milligal to the total error budget, corresponding to only a few millimetres in height.

Considering these sources of error, the total uncertainty in the derived orthometric, dynamic, and normal heights is about 1–2 cm when compared to the traditional leveled heights. On the campus scale discussed here, the differences between height systems shown in Table 5 are mainly due to actual gravity variations rather than measurement noise.

Table 5 summarizes the geopotential numbers and derived height systems for all stations in the KNUST gravity–levelling network. The classical spirit-levelled heights range approximately from 249 to 277 meters, and the corresponding geopotential numbers span from about 244 to 271 g.p.u. This variation reflects the modest relief across the campus but already indicates that potential differences are large enough to produce measurable distinctions between the various height definitions.

By construction, the orthometric heights H_o coincide with the classical spirit-levelled heights at the centimetre level, so the differences $H_o - H_{\text{class}}$ are essentially zero for all stations. In contrast, the dynamic heights H_d are systematically smaller than the classical heights by roughly 0.16–0.18 m across the network, while the normal heights H_n are systematically larger than the classical heights by approximately 0.48–0.54 m. These offsets are an order of magnitude greater than the estimated 1–2 cm uncertainty from levelling, gravimeter drift, and calibration, indicating that the discrepancies between height systems in Table 5 are controlled by real gravity field variations rather than measurement noise.

Overall, the final height results confirm that, even within the limited spatial extent of the KNUST campus, the choice of height system (orthometric, dynamic, or normal) yields differences of several decimeters relative to classical spirit-levelled heights. This highlights the practical importance of using gravity-consistent heights for precise engineering and geodetic applications, especially when integrating campus networks into larger regional or national reference frames.

Table 5 Final height summary for KNUST control stations

Station	Cp (g.p.u.)	Ho (m)	Hd (m)	Hn (m)	Classical height H_class (m)	Ho - H_class (m)	Hd - H_class (m)	Hn - H_class (m)
SGA1	256.142	261.369	261.204	261.876	261.369	0.000	-0.165	0.507
SGA2	243.968	248.947	248.790	249.430	248.947	0.000	-0.157	0.483
SGA3	247.286	252.333	252.173	252.823	252.333	0.000	-0.160	0.490
SGA5	248.411	253.481	253.321	253.973	253.481	0.000	-0.160	0.492
SGA6	248.404	253.473	253.313	253.965	253.473	0.000	-0.160	0.492
SGA7	250.880	256.000	255.838	256.497	256.000	0.000	-0.162	0.497
SGA10	271.446	276.986	276.811	277.523	276.986	0.000	-0.175	0.537
SGA11	267.334	272.790	272.618	273.319	272.790	0.000	-0.172	0.529
SGA12	269.404	274.902	274.728	275.435	274.902	0.000	-0.174	0.533
SGA13	269.297	274.793	274.619	275.326	274.793	0.000	-0.174	0.533
TP1	257.426	262.680	262.514	263.190	262.680	0.000	-0.166	0.510
TP6	258.450	263.724	263.557	264.236	263.724	0.000	-0.167	0.512
KSB2	253.688	258.865	258.701	259.367	258.865	0.000	-0.164	0.502
KSB1	244.397	249.385	249.227	249.869	249.385	0.000	-0.158	0.484
KCP1	248.107	253.170	253.010	253.661	253.170	0.000	-0.160	0.491
KCP2	245.771	250.787	250.628	251.274	250.787	0.000	-0.159	0.487

The three height types were derived from the geopotential numbers, C_p :

- Orthometric height (approximate):

$$H_o = \frac{C_p}{\bar{g}_P}$$

where \bar{g}_P is mean gravity along the plumb line

- Dynamic height:

$$H_d = \frac{C_p}{\gamma_{45}}$$

where γ_{45} is normal gravity at 45° latitude ($\approx 9.8062 \text{ m/s}^2$).

- Normal height (simple approximation):

$$H_n = \frac{C_p}{\bar{\gamma}_P}$$

where $\bar{\gamma}_P$ is mean normal gravity along the normal to the reference ellipsoid.

6. Discussion

The study shows that even across a campus-wide network, the difference between classical leveling heights and geopotential-based height systems can be measured. Since gravity variations across KNUST are small, differences are minor, but they remain important for geodetic consistency and connecting to larger-scale vertical datums. Calculating gravity potential differences depends on the accuracy of both leveling and gravity measurements. The leveling procedures used align with first-order precise leveling, and the gravimeter provided consistent values with acceptable precision. A limitation was the lack of an absolute gravity station on campus, which means absolute geopotential numbers cannot yet be directly linked to global datums. Nonetheless, relative potential differences and derived heights are reliable and suitable for local uses such as vertical control, GNSS–geoid integration, and teaching. The methodology can be easily applied to other local networks in Ghana. With additional absolute gravity data, GNSS coordinates, and a regional geoid, these networks could be integrated into a unified national height system.

7. Conclusions

This study has shown a practical method for measuring gravity potential differences and establishing gravity-consistent height systems for a local control network on the KNUST campus in Kumasi, Ghana. By combining precise first-order leveling with relative gravimetry using a LaCoste & Romberg G-944 gravimeter, we calculated geopotential numbers for 16 control stations and derived corresponding orthometric, dynamic, and normal heights. The comparison with conventional levelled heights confirms the well-known limitation of geometric leveling: heights obtained without considering spatial gravity variations are path-dependent and thus not strictly physical.

Although gravity variations across the campus are minor, they are enough to create measurable differences ranging from millimeters to a few centimeters between purely levelled heights and heights from geopotential numbers. This emphasizes the importance of including gravity data when establishing vertical control, even at the campus or city level, especially where networks need to connect to regional or national height systems. The results also show that the necessary observational and computational methods can be carried out using equipment and software standard in many geomatics labs and survey organizations.

The workflow presented here offers a model for densifying gravity-consistent vertical control in other local networks in Ghana and similar settings. Future work should focus on establishing an absolute gravity benchmark on campus, integrating GNSS data and regional geoid models, and expanding the network to connect with the national leveling and gravity frameworks. These developments would

enable KNUST and similar networks to serve as reliable nodes in developing a unified vertical datum for Ghana and the broader West African region.

References

1. Moritz, H., & Hofmann Wellenhofer, B. (2005). Physical geodesy.
2. Jekeli, C. (2000). Heights, the Geopotential, and Vertical Datums (Report 459). Ohio State University.
3. Lee, Y. J., Choi, Y. S., Kwon, J. H., & Lee, J. S. (2010). The determination of orthometric height based on gravity in Korea. *Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography*, 28(1), 99-106.
4. Wallace, J. M., & Gutzler, D. S. (1981). Teleconnections in the geopotential height field during the Northern Hemisphere winter. *Monthly weather review*, 109(4), 784-812.
5. Schutz, B. E., Tapley, B. D., Lundberg, J. B., & Halamek, P. (1987). Simulation of a Geopotential Research Mission for gravity studies. *manuscripta geodaetica*, 12(1), 51-63.