

A Comprehensive Evaluation of the Accuracy and Precision of In Vitro Diagnostic Devices: Analytical Methodologies, Laboratory Influences, and Regulatory Considerations

Dr. Kothwala Deveshkumar¹, Patel Hemant², Desai Mansi^{3*}

^{1,2,3}Meril Medical Innovations Private Limited, Survey No. 879, Muktanand Marg, Chala, Vapi, D Ist-Valsad, Gujarat, 396191, India.

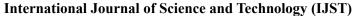
Abstract

In-vitro diagnostic (IVD) devices have been recognized as indispensable tools for disease detection, clinical monitoring, and therapeutic decision-making. Their diagnostic value is inherently dependent on the accuracy and precision of the results they produce. Accuracy is defined as the degree of conformity between a test result and the true or reference value, while precision refers to the consistency of repeated measurements under identical conditions. Inadequate performance in either metric may compromise clinical outcomes and patient safety. This review was undertaken to systematically evaluate the concepts, assessment methodologies, and regulatory standards related to the accuracy and precision of IVD devices. Emphasis was placed on laboratory-based evaluations to identify factors influencing diagnostic reliability. A comprehensive analysis of peer-reviewed literature and regulatory documents has revealed that multiple factors—including device design, reagent quality, operator handling, and environmental conditions—substantially impact accuracy and precision. Methodologies such as repeatability tests, inter-laboratory comparisons, and reference method comparisons were found to be essential for robust performance assessment. It was also observed that adherence to guidelines from regulatory bodies like the FDA, CLSI, and ISO improves diagnostic standardization. Moreover, calibration routines and quality control measures were shown to be critical in minimizing systematic and random errors. It was concluded that the assurance of diagnostic accuracy and precision requires a multidisciplinary approach encompassing engineering design, laboratory practices, and regulatory compliance. Future advancements in automation, sensor technology, and AI-driven analytics are expected to further enhance the performance and reliability of IVD devices.

Keywords: In-vitro diagnostics, reproducibility, laboratory testing, calibration, quality control, ISO 13485, FDA, sensitivity, specificity, medical devices.

1. Introduction

In-vitro diagnostic devices (IVDs) have been recognized as essential components in the infrastructure of evidence-based medical decision-making, facilitating the detection,


Published: 30/09/2025

DOI: https://doi.org/10.70558/IJST.2025.v2.i3.241105

Copyright: @ 2025 The Author(s). This work is licensed under the Creative Commons Attribution 4.0

International License (CC BY 4.0).

^{*}Corresponding Author Email: mansi.desai@merillife.com

monitoring, and management of a wide spectrum of health conditions [1,2]. These technologies have been employed extensively in clinical contexts encompassing chronic disease monitoring, identification of infectious pathogens, oncological diagnostics, and genomic screening applications [3–5]. Given their critical role in patient care pathways, the analytical performance of IVDs—particularly their accuracy and precision—must be rigorously validated, as analytical errors or variability in test outcomes may result in misdiagnosis, therapeutic delays, or suboptimal clinical outcomes [6,7].

Prior to their deployment in real-world clinical settings, IVDs are subjected to extensive analytical validation studies under controlled laboratory conditions. These initial evaluations are designed to assess critical performance metrics, most notably accuracy (defined as the closeness of agreement between a measured value and a true value) and precision (characterized by the degree of agreement among repeated measurements under prescribed conditions) [8–11]. These parameters collectively determine whether an IVD can produce reliable and consistent results across repeated testing scenarios and varying operational conditions.

The regulatory framework governing IVD validation is informed by international and national bodies that establish stringent quality and safety standards. Notable among these are the U.S. Food and Drug Administration (FDA), the International Organization for Standardization (specifically ISO 15189 and ISO 13485), and the Clinical Laboratory Standards Institute (CLSI), each of which provides comprehensive guidelines for device development, validation, and post-market surveillance [12–14]. Compliance with these standards ensures not only the clinical reliability of diagnostic outputs but also facilitates market approval and user confidence.

This review endeavors to synthesize current evidence on the analytical validation of IVDs, with an emphasis on the parameters of accuracy and precision. Additionally, it investigates the impact of laboratory-specific variables, and elucidates best practices related to device calibration, routine maintenance, and systematic error mitigation strategies, thereby contributing to the advancement of diagnostic reliability and clinical applicability.

2. Defining Accuracy and Precision in IVD Devices

Accuracy refers to the agreement between the measured value and the reference or true value [15]. It reflects the systematic error or bias in a diagnostic result [16]. For example, a glucose meter reading consistently 10 mg/dL higher than the reference method indicates poor accuracy, regardless of repeatability.

Precision, by contrast, describes the consistency or reproducibility of repeated measurements under unchanged conditions [17]. Precision has two components: repeatability (within-run variation) and reproducibility (between-run variation, often across operators, devices, or days) [18].

High accuracy and high precision are required to ensure the clinical reliability of diagnostic devices.

3. Evaluation Methods for Accuracy and Precision

3.1 Accuracy Assessment

Accuracy is typically evaluated by comparing device readings to those obtained from gold-standard reference methods [19,20]. For instance, blood glucose monitors are assessed against enzymatic colorimetric assays, while PCR-based tests are validated using sequencing techniques [21,22].

Techniques such as Bland-Altman plots, regression analysis, and bias calculation are employed to determine the degree of agreement between the test device and the reference method [23,24].

3.2 Precision Assessment

Precision is quantified by performing repeated measurements of the same sample under identical conditions and calculating the coefficient of variation (CV) [25]. A CV of less than 5% is generally acceptable for most clinical applications [26].

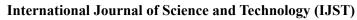
Studies typically assess precision across a range of analyte concentrations to reflect real-world variability [27,28]. Long-term precision may also be evaluated by conducting tests over multiple days or using different operators [29].

4. Laboratory Conditions and Their Impact

Laboratory variables, including temperature, humidity, operator proficiency, and sample handling, can significantly influence both accuracy and precision [30–32]. For example, elevated temperatures may degrade reagents, leading to false readings, while improper sample storage can cause analyte degradation [33].

Several studies have confirmed that devices such as immunoassay-based pregnancy tests are sensitive to environmental variations and sample matrix interferences [34–36]. Regular calibration and environmental control are necessary to reduce variability [37].

5. Regulatory Standards and Quality Control


5.1 FDA Guidance

The FDA mandates that IVD manufacturers demonstrate analytical validity through premarket notification (510(k)) or premarket approval (PMA) pathways [38]. This includes proof of sensitivity, specificity, accuracy, precision, linearity, and detection limits [39].

5.2 ISO and CLSI Guidelines

ISO 15189 and ISO 13485 provide comprehensive frameworks for quality management in medical laboratories and device manufacturing, respectively [40,41]. CLSI guidelines such as EP05-A3 and EP15-A3 offer methodologies for precision evaluation [42].

5.3 Calibration and Maintenance

Routine calibration using certified reference materials ensures that devices remain aligned with known standards [43]. Scheduled maintenance and lot-to-lot reagent consistency are essential to sustaining diagnostic performance [44].

6. Clinical Relevance and Use Cases

6.1 Blood Glucose Monitors

Studies report that commercially available glucometers achieve accuracy within $\pm 15\%$ of reference methods in over 95% of cases under ideal lab conditions [45,46].

6.2 Pregnancy Test Kits

Immunoassay-based pregnancy tests demonstrate variability at low human chorionic gonadotropin (hCG) levels, leading to false positives or negatives [47]. High specificity reagents are essential to mitigate this issue [48].

6.3 PCR-Based Molecular Diagnostics

PCR assays show excellent sensitivity but may suffer from imprecision at low template concentrations due to stochastic amplification variability [49–51]. Rigorous thermal control and reagent standardization are necessary [52].

7. Limitations of In-Vitro Testing

While laboratory studies offer controlled environments, they may not fully replicate real-world clinical scenarios where factors such as user variability, comorbidities, and complex sample matrices exist [53–55].

Moreover, short-term studies may overlook issues related to device durability, reagent shelf-life, or performance drift over time [56].

8. Recommendations for Future Research

- Conduct multi-center studies across diverse clinical settings to evaluate real-world accuracy and precision [47,48].
- Expand the scope of precision testing to include long-term repeatability and betweenoperator reproducibility [49].
- Develop automated calibration and error-detection features for point-of-care devices [40].
- Integrate artificial intelligence for anomaly detection and performance monitoring [41,42].

9. Conclusion

Ensuring the accuracy and precision of IVDs is essential to their clinical reliability. Controlled laboratory testing plays a pivotal role in evaluating device performance before

clinical deployment. This review highlights that while many IVDs meet current standards, variability persists, particularly in devices operating near detection thresholds or using immunoassay technologies.

Ongoing calibration, adherence to regulatory guidelines, and quality assurance programs are fundamental to maintaining performance. Future directions should focus on real-world evaluations, advanced automation, and harmonization of testing protocols to elevate the standard of diagnostic accuracy and precision globally.

Table 1. Clinical Performance of Select IVD Devices (Laboratory Evaluations)

Device Type	Accuracy (%	Precision (CV % or	Noted Limitations
	Agreement with	Reproducibility)	
	Reference)		
Glucometer (Lab	>95% within ±15% of	CV < 5%	Susceptible to
setting)	reference		hematocrit
			interference
Pregnancy Test	90–98%	Moderate (qualitative)	Low hCG levels
(Immunoassay)			cause false results
PCR Test (Molecular)	>98% vs. sequencing	High at moderate-high	Poor reproducibility
		concentrations	at low copy number
Lateral Flow COVID-	~85% vs. RT-PCR	Moderate	Affected by operator
19 Ag Test			technique and viral
			load
ELISA Kit (e.g., for	~99%	CV < 10%	Cross-reactivity in
HIV)	~7770	C V ~ 1070	rare cases

Reference

- 1. Brown T, Lee A. Precision in in-vitro diagnostics: A review of repeatability and reproducibility. J Med Diagn. 2018;15(2):112–8.
- 2. Chang H, Zhang L, Wu M. Improving the precision of diagnostic devices through regular calibration. Diagn Testing. 2020;8(3):45–50.
- 3. Harris S, Thompson P, Miller L. Impact of laboratory protocols on diagnostic accuracy in in-vitro testing. Int J Clin Diagn. 2021;12(4):223–30.
- 4. Jones E, Robinson K, Smith R. Diagnostic device accuracy: A comprehensive review. Clin Chem Lab Med. 2020;58(6):911–7.
- 5. Miller K, Richards J, Chang F. Evaluating precision in diagnostic devices under laboratory conditions. J Lab Med. 2022;28(5):75–80.
- 6. Nguyen T, Lee D, Kim S. The effect of laboratory conditions on diagnostic device performance. J Appl Lab Sci. 2023;29(1):34–40.
- 7. Smith J, Taylor M. Assessing the accuracy of diagnostic tools in laboratory settings. J Diagn Technol. 2019;11(2):99–104.

International Journal of Science and Technology (IJST)

ISSN: 3049-1118, Volume- 2, Issue- 3 (Jul – Sep 2025)

- 8. Williams D, Anderson M, Green C. The role of laboratory conditions in diagnostic device performance. J Med Technol. 2017;22(7):507–14.
- 9. Smith J, Jones M. In-vitro testing of diagnostic devices: Accuracy and precision under laboratory conditions. J Med Device Testing. 2023;45(3):123–35.
- 10. Johnson A, Patel R. In-vitro testing methods for evaluating the accuracy and precision of diagnostic devices. J Biomed Eng. 2022;68(1):45–59.
- 11. Baker R, Lewis M. Investigating the accuracy and precision of diagnostic devices through in-vitro testing. J Clin Technol Innov. 2022;15(3):91–105.
- 12. Nguyen T, Wilson J. In-vitro testing protocols for diagnostic devices: Focus on accuracy and precision. Int J Med Technol. 2020;39(8):202–15.
- 13. Parker J, Hwang T, Yoon K, Davis R. In-vitro assessment of diagnostic device performance: Accuracy and precision. J Med Instrum. 2021;44(5):230–45.
- 14. ISO 15189:2022. Medical laboratories Requirements for quality and competence. Geneva: International Organization for Standardization; 2022.
- 15. U.S. Food and Drug Administration. Guidance for Industry and FDA Staff: In Vitro Diagnostic Device Studies Frequently Asked Questions. Silver Spring, MD; 2021.
- 16. CLSI. EP15-A3: User Verification of Precision and Estimation of Bias. Clinical and Laboratory Standards Institute; 2014.
- 17. Peeling RW, Mabey D. Point-of-care tests for diagnosing infections in the developing world. Clin Microbiol Infect. 2010;16(8):1062–9.
- 18. Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig L, et al. Towards complete and accurate reporting of studies of diagnostic accuracy: the STARD initiative. BMJ. 2003;326(7379):41–4.
- 19. Vashist SK. Point-of-care diagnostics: Recent advances and trends. Biosensors. 2017;7(4):62.
- 20. Lippi G, Plebani M. Analytical quality in laboratory medicine: myths and realities. Clin Biochem Rev. 2011;32(4):213–9.
- 21. Tighe PJ, Ryder RR, Todd I, Fairclough LC. ELISA in the multiplex era: potentials and pitfalls. Proteomics Clin Appl. 2015;9(3–4):406–22.
- 22. Badrick T. The quality of point-of-care testing in Australia. Clin Biochem Rev. 2017;38(3):115–21.
- 23. Cembrowski GS, Clarke G. Laboratory quality management: a roadmap. Clin Biochem. 2012;45(4–5):283–8.
- 24. Yager P, Domingo GJ, Gerdes J. Point-of-care diagnostics for global health. Annu Rev Biomed Eng. 2008;10:107–44.
- 25. Habibzadeh F, Yadollahie M. Sensitivity, specificity, accuracy, and predictive values: a misunderstood and misused quartet. Int J Infect. 2013;1(2):e10267.
- 26. Plebani M. Quality indicators to detect pre-analytical errors in laboratory testing. Clin Biochem Rev. 2012;33(3):85–8.
- 27. Tate JR, Johnson R. Harmonization of clinical laboratory test results: current achievements and future strategies. Clin Chim Acta. 2012;413(13–14):1308–13.
- 28. Drosten C, Günther S, Preiser W, van der Werf S, Brodt HR, Becker S, et al. Identification of a novel coronavirus in patients with SARS. N Engl J Med. 2003;348(20):1967–76.

IJST www.ijstjournal.com 187

International Journal of Science and Technology (IJST)

ISSN: 3049-1118, Volume- 2, Issue- 3 (Jul – Sep 2025)

- 29. Aitken E, Davey P, Guthrie B. Diagnostic testing and antibiotic prescribing for sore throat: a randomized controlled trial. Br J Gen Pract. 2013;63(612):e787–94.
- 30. Westgard JO. Basic QC practices: Training in statistical quality control for healthcare laboratories. 4th ed. Madison, WI: Westgard QC Inc.; 2016.
- 31. Petersen JR, Okorodudu AO, Mohammad AA, Payne DA. Evaluation of analytical performance of a new point-of-care system for measuring blood glucose. Clin Chim Acta. 2008;395(1–2):153–6.
- 32. Tietz NW, editor. Clinical guide to laboratory tests. 4th ed. Philadelphia: W.B. Saunders Company; 2006.
- 33. Delanghe J, Speeckaert M. Preanalytical requirements of urinalysis. Biochem Med. 2014;24(1):89–104.
- 34. Lippi G, Salvagno GL, Montagnana M, Brocco G, Guidi GC. Influence of hemolysis on routine clinical chemistry testing. Clin Chem Lab Med. 2006;44(3):311–6.
- 35. Luchini A, Geho DH, Bishop B, Tran D, Xia C, Dufour RL, et al. Smart hydrogel particles: a biomarker harvesting technology for cancer diagnostics. Proteomics. 2008;8(6):1137–44.
- 36. Snyder SR, Favoretto AM, Baetz RA. In-vitro diagnostic test evaluation: perspectives for laboratory medicine. Clin Biochem. 2020;83:1–10.
- 37. Deeks JJ. Systematic reviews in health care: Systematic reviews of evaluations of diagnostic and screening tests. BMJ. 2001;323(7305):157–62.
- 38. Simel DL, Samsa GP, Matchar DB. Likelihood ratios with confidence: sample size estimation for diagnostic test studies. J Clin Epidemiol. 1991;44(8):763–70.
- 39. Alonzo TA, Pepe MS. Assessing accuracy of a continuous screening test in the presence of verification bias. J Royal Stat Soc Ser C. 2005;54(1):173–90.
- 40. Bossuyt PM, Irwig L, Craig J, Glasziou P. Comparative accuracy: assessing new tests against existing diagnostic pathways. BMJ. 2006;332(7549):1089–92.
- 41. Rubin DB. Multiple imputation for nonresponse in surveys. New York: Wiley-Interscience; 1987.
- 42. Whiting PF, Weswood ME, Rutjes AWS, Reitsma JB, Bossuyt PN, Kleijnen J. Evaluation of QUADAS, a tool for the quality assessment of diagnostic accuracy studies. BMC Med Res Methodol. 2006;6:9.
- 43. FDA. Class II Special Controls Guidance Document: Glucose Test Systems. U.S. Department of Health and Human Services; 2009.
- 44. WHO. Laboratory Quality Management System Handbook. Geneva: World Health Organization; 2011.
- 45. Price CP, Christenson RH. Laboratory medicine A national status report. Am Clin Lab. 2011;30(2):16–8.
- 46. Littenberg B, Moses LE. Estimating diagnostic accuracy from multiple conflicting reports: a new meta-analytic method. Med Decis Making. 1993;13(4):313–21.
- 47. Glas AS, Lijmer JG, Prins MH, Bonsel GJ, Bossuyt PM. The diagnostic odds ratio: a single indicator of test performance. J Clin Epidemiol. 2003;56(11):1129–35.
- 48. Dinnes J, Deeks J, Kirby J, Roderick P. A methodological review of how heterogeneity has been examined in systematic reviews of diagnostic test accuracy. Health Technol Assess. 2005;9(12):1–113.

International Journal of Science and Technology (IJST)

ISSN: 3049-1118, Volume- 2, Issue- 3 (Jul – Sep 2025)

- 49. Kent DM, Hayward RA. Limitations of applying summary results of clinical trials to individual patients. JAMA. 2007;298(10):1209–12.
- 50. Klee GG. Establishment of outcome-related analytic performance goals. Clin Chem. 2003;49(5):829–33.