

Optimizing Bioprocess Economics for Manufacturing of Vaccine: Pathways to Cost Reduction

Prashant R. Chawla¹, Dr. Uma Addepally^{2*}

¹Center of Biotechnology, University College of Engineering, Science and Technology, JNTUH, Kukatpally, Hyderabad 500085

²Associate Professor, Center for Biotechnology, University College of Engineering, Science and Technology, JNTUH, Kukatpally, Hyderabad. 500085

Abstract:

Cost reduction in vaccine manufacturing is a critical objective to sustain competitiveness and profitability while maintaining product quality, safety and efficacy. Increasing the selling prices is rarely feasible due to market pressures and regulatory restrictions, therefore, optimizing manufacturing costs is the preferred strategy. Manufacturing costs broadly comprise direct material costs, direct labor costs, and overhead costs, each of which presents unique opportunities for cost savings by up to 30%. This paper explores systematic approaches to reduce costs in vaccine production, such as adopting cost effective raw materials, optimization of labor utilization, minimizing product rejections and excess inventory, managing overhead costs, and streamlining of process steps. The discussion emphasizes that careful implementation of strategies that can reduce production costs, while maintaining compliance with Good Manufacturing Practices (GMP), regulatory standards, and product performance. By addressing both technical and operational aspects, the paper highlights practical measures that enable sustainable cost reduction without compromising the quality or accessibility of life saving vaccines.

Keywords: Manufacturing Costs, Cost Reduction Strategies, Product Quality, Continuous bioprocessing, Raw material sourcing, Efficacy, GMP.

1. Introduction:

The biopharmaceutical industry operators in a highly regulated environment where product quality, efficacy, and patient safety are paramount. At the same time, manufacturers face growing pressures to reduce costs due to global competition, stringent regulatory requirements, and the need to improve affordability and accessibility of life saving therapies. Unlike consumer-driven industries, price escalation is rarely an option in biopharmaceuticals, making cost reduction at the manufacturing level the most effective means of improving profitability [3, 6].

Manufacturing cost is the defined broadly by,

Published: 29/09/2025

DOI: https://doi.org/10.70558/IJST.2025.v2.i3.241102

Copyright: @ 2025 The Author(s). This work is licensed under the Creative Commons Attribution 4.0

International License (CC BY 4.0).

^{*}Corresponding Author Email: vedavathil@jntuh.ac.in

Total manufacturing cost = Direct costs + Manufacturing overheads

A clear understanding of these cost components enables manufacturers to identify and implement sustainable cost saving opportunities. For an organization, maintaining a balance between quality, manufacturing speed, timely delivery, and operational efficiency is fundamental for the long-term success of any organization. Quality serves as the foundation, ensuring that products are safe, reliable and compliant with regulatory requirements. At the same time, speed of manufacturing and delivery is essential to remain competitive in a global market where time to market directly impacts business growth (Figure 1). Efficiency in resource utilization, process optimization, and workforce management further strengthens organizational performance. However, these objectives must be achieved without compromising cost effectiveness, as reducing manufacturing costs while maintaining standards contributes to profitability and sustainability. Organizations that successfully integrate these factors enhance customer trust, achieve regulatory compliance and maintain a strong competitive edge in the industry.

Balancing quality, manufacturing speed, delivery timelines and efficiency with cost reduction is essential for sustainable success in biopharmaceutical production. However, cost reduction must be approached with caution; short term and poorly planned measures risk compromising quality and regulatory compliance, which may result in severe financial and reputational losses.

Figure 1: Balancing Manufacturing Costs Among Critical Parameters

2. Vaccine Manufacturing Process

A typical vaccine manufacturing process can be illustrated through a schematic process flow diagram (Figure 2) highlighting the common unit operations involved. The production generally begins with cell cultivation in a bioreactor or fermenter, followed by clarification to separate the biomass using either batch centrifugation, continuous centrifugation, or filtration techniques. For products expressed intracellularly, a cell lysis step is incorporated to release the target molecule. The resulting mixture then undergoes removal of cell debris through additional centrifugation or filtration steps. The clarified product stream is subsequently subjected to purification, which often includes chromatographic polishing and buffer exchange to achieve the desired purity and stability. After purification, the bulk product is formulated

with appropriate excipients, subjected to final sterile filtration, and filled into glass vials or pre-filled syringes under aseptic conditions.

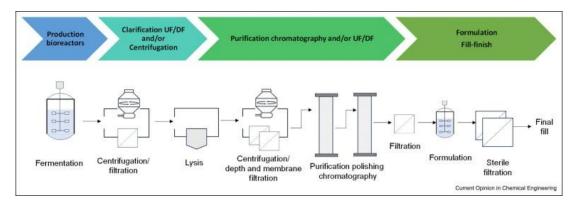


Figure 2: Generic Flow Diagram for Vaccine Antigen

This paper outlines practical and strategic approaches for reducing manufacturing costs in biopharmaceutical production i.e. Diphtheria toxoid, with specific emphasis on maintaining compliance with good manufacturing practices (GMP) and regulatory compliances.

3. Description:

a. Selection of Low-Cost Materials

Material cost constitutes a significant portion of overall manufacturing expenses. In biopharmaceutical production, this includes raw material upstream and downstream processes, consumables such as filters (Sartorius vs MDI), silicon tubings (Amy Polymer vs Saint-Gobain vs MDI vs Mater flex), and mechanical accessories like clamps and valves. Cost reduction does not imply compromising material quality; rather, it involves competitive sourcing, supplier qualification, and establishing alternate vendor networks. Optimizing raw material sourcing and process steps can reduce manufacturing costs by 15-25% per batch [7]. This approach minimizes dependency on a single supplier, enhances bargaining power, reduces risks of supply disruption, and ensures continuous availability of quality materials at competitive prices without reducing the product yield. For example, yields of diphtheria toxin were found to be comparable when using traditional meat based media versus animal- free synthetic media.

b. Reduction of Labor Cost

Labor represents another major expense in manufacturing. While unskilled labor may appear cost-efficient in the short term, a well-trained workforce ensures higher productivity, minimizes errors, and reduces rework. Unskilled personnel may assist skilled operators in non-critical tasks, thereby allowing trained staff to focus on activities influencing quality and compliance. Investment in training programs, skill development, and retention strategies significantly lowers long-term costs by reducing employee turnover. Additionally, performance based incentive systems encourage employees to work more efficiently and align their goals with organizational objectives.

c. Reduce Rejections and Avoid Excess inventory

Rejected products represent wasted resources, lost time, and additional costs related to rework, repackaging, and regulatory documentation. In severe cases, batch recalls can cause reputational damage and financial penalties. Preventive measures such as root cause analysis, brainstorming, and process monitoring tools help reduce rejections. Similarly, excess inventory ties up capital, consumes warehouse space, and leads to obsolescence. Root cause analysis and process optimization reduced product rejections rates from 8%-20%, saving material costs and rework time. Strong coordination between manufacturing, supply chain and marketing functions, supported by centralized warehouse systems, minimizes overproduction and optimizes stock levels.

d. Reduction of overhead Costs

Overhead costs encompass a wide range of indirect expenses, including administration, depreciation, utilities, and facility maintenance. These costs, while not directly attributable to a single unit of production, significantly affect profitability. Careful budgeting, energy saving initiatives, optimized use of facility shape, and digitization of administrative tasks can help lower overhead burdens without disrupting manufacturing continuity [5].

e. Minimizes process steps in manufacturing

Biopharmaceutical manufacturing involves complex processes with multiple steps, some of which may add little or no value to product quality. Each step in the manufacturing process incurs costs in terms of raw materials, consumables, time and labor. The manufacturer has to look thoroughly into process to understand significance of each-and-every step. Historical processes or transferred technologies may include redundant steps that increase costs unnecessarily. Critical process evaluation helps identify such non-value-added steps, which can be eliminated or simplified, while maintaining product quality and regulatory compliance [2, 7]. This approach shortens cycle times, reduces consumable use, increase the number of batch in the defined time period and lowers overall manufacturing expenses.

4. Conclusion

Sustainable cost reduction in biopharmaceutical manufacturing requires a balance approach that safeguards quality, safety and regulatory compliance. By systematically addressing direct and indirect costs-through strategic material sourcing, efficient workforce management, minimizing product rejections, reducing overheads, and streamlining processes- manufacturers can achieve significant savings and improve profit margins. Unlike price escalation strategies, cost reduction fosters competitiveness, improves market access, and strengthens long-term business growth. In essence, optimizing manufacturing efficiency while upholding quality standards is the most reliable path to economic sustainability in the biopharmaceutical industry. In the context of vaccines, such measures not only strengthen industrial competitiveness but also contribute to global health equity by enabling wider access to affordable life saving therapies [6,7].

5. References:

- 1. Niazi, S. K. (2018). Continuous Manufacturing of Recombinant Drugs: Comprehensive Analysis of Cost Reduction Strategies, Regulatory Pathways, and Global Implementation. *Pharmaceuticals*, 18(1157), 1-32.
- 2. Garcia, F. A., Gefroh, E. (2023). Reducing biopharmaceutical manufacturing costs through continuous processing in a flexible J.POD® facility. *Drug Discovery Today*, 28(7), 1-5.
- 3. Plotkin, S., Robinson, J. M., Cunningham, G., Iqbal, R., Larsen, S. (2017). The Complexity and Cost of vaccine manufacturing An overview. *Vaccine*, 35, 4064-4071.
- 4. Ramin, E., Cardillo, A.G., Liebers, R., Schmolder, J., Lieres, E. V. Molle, W. V., Niebel, B., Natalis, L., Meln, I., Perea-Velez, M., Clenet, D., Jorgensen, J. B., Nilsson, B., Bracewell, D.G., Gernaey, K.V. (2024). Accelerating Vaccine manufacturing development through model-based approaches: current advances and future opportunities. *Current Opinion in Chemical Engineering*, 43, 1-11.
- 5. Thakur, G., Mink, S., Bak, H., Tustian, A. (2023). Opportunities to implement continuous processing in production of recombinant adeno-associated viral vectors. *Cell & Gene Therapy Insights*, 9(3), 563-579.
- 6. Yang, Z., Paes, B. C. M. F., Fulber, J. P. C., Tran, M. Y., Farnos, O., Kamen, A. A., (2023). Development of an Integrated Continuous Manufacturing Process for the rVSV-Vectored SARS-CoV-2 Candidate Vaccine. *Vaccines*, 11(4), 1-18.
- 7. Schmidt, A., Helgers, H., Vetter, F. L., Juckers, A., Strube, J. (2023). Fast and Flexible mRNA vaccine manufacturing as a solution to pandemic situations by adopting chemical engineering good practice-continuous autonomous operations in stainless steel equipment concepts. *Processes*. 9(11), 1-20.

IJST www.ijstjournal.com 150