

Harnessing Nature's Abundance: A Narrative Review on the Supremacy of Herbal Medicines

Saba Khan^{1*}, Dr. Neetu Yadav²

¹Ph.D. Scholar, Department of Home Science, Swami Vivekanand Subharti University, Meerut, India ²Assistant Professor, Department of Home Science, Swami Vivekanand Subharti University, Meerut, India

Abstract

Herbal remedies have played a crucial role in human health care for millennia and remain significant therapeutic resources in both traditional practices and contemporary medicine. Growing concerns over the side effects of synthetic drugs have heightened global interest in natural alternatives, which are often viewed as safer, more holistic, and costeffective. This review brings together scientific insights on the pharmacological value of widely used herbs such as Aloe vera, Peppermint, Ginger, Chamomile, Lavender, Garlic, Turmeric, Lemon Balm, Thyme, Cilantro, Basil, St. John's Wort, and Dandelion. Relevant literature was collected from PubMed, Scopus, and Google Scholar, with a focus on phytochemical composition, pharmacological mechanisms, and therapeutic roles. Evidence indicates that Aloe vera is effective in wound repair and oxidative stress reduction; peppermint supports gastrointestinal health; ginger provides anti-inflammatory and metabolic benefits; and chamomile and lavender exhibit calming and sedative properties. Garlic and turmeric demonstrate cardiovascular and anticancer potential, while lemon balm, thyme, cilantro, basil, St. John's Wort, and dandelion offer antioxidant, liver-protective, and immune-enhancing effects. Despite promising outcomes, issues such as inconsistent dosing, safety evaluation, and limited clinical trials restrict their broader acceptance. Future studies should prioritize welldesigned randomized trials and standardized formulations to promote the integration of herbal medicines into mainstream healthcare systems.

Keywords: Herbal medicine, phytochemicals, Aloe vera, Ginger, Chamomile, Ayurveda, natural remedies.

Introduction

Plants have always been integral to medical practice, long before the emergence of modern pharmaceuticals. Ancient civilizations such as those of India, Egypt, China, and Greece developed highly sophisticated systems of traditional medicine in which herbs were central to disease prevention and treatment. For example, Ayurveda in India, Traditional Chinese Medicine (TCM) in China, and the Unani system in the Middle East relied on botanicals for maintaining health and managing illness. The continued use of herbs across diverse cultures

Published: 09/09/2025

DOI: https://doi.org/10.70558/IJST.2025.v2.i3.241086

Copyright: @ 2025 The Author(s). This work is licensed under the Creative Commons Attribution 4.0

International License (CC BY 4.0).

^{*}Corresponding Author Email: thesabakhan205@gmail.com

reflects both their therapeutic efficacy and adaptability (Ekor, 2014; Pan et al., 2013).

Currently, nearly 80% of the global population still relies on traditional medicine, with herbal remedies providing the primary form of healthcare for millions of people (World Health Organization, 2013). In developed nations, their growing popularity is linked to consumer demand for holistic and natural therapies, concerns about adverse drug reactions, and the search for affordable treatment options (Yuan et al., 2016). Over recent decades, pharmacological studies have validated the medicinal value of many herbs, identifying phytochemicals such as alkaloids, flavonoids, terpenoids, polyphenols, and glycosides that contribute antioxidant, anti-inflammatory, antimicrobial, and immunomodulatory properties (Pan et al., 2013; Wang et al., 2009).

Unlike synthetic drugs, which typically target specific molecular pathways, herbal medicines exert multitargeted effects, making them especially useful for chronic conditions such as cardiovascular disease, diabetes, arthritis, and neurological disorders (Yuan et al., 2016). Nevertheless, their widespread adoption faces barriers, including lack of standardization, variable phytochemical concentrations, and limited large-scale clinical evidence (Ekor, 2014).

This review consolidates current knowledge of 13 widely used herbs, highlighting their phytochemistry, therapeutic applications, and clinical evidence, while addressing the challenges and opportunities for their integration into modern healthcare.

Table 1. Phytochemicals and Pharmacological Actions of Selected Herbal Medicines

Herb (Botanical name)	Major Phytochemicals	Pharmacological Actions
Aloe vera (Aloe barbadensis)	Polysaccharides (acemannan), anthraquinones, vitamins A, C, E	Wound healing, antioxidant, anti-inflammatory
Peppermint (Mentha	Menthol, menthone, rosmarinic	Antispasmodic, carminative,
piperita)	acid	analgesic, cognitive stimulant
Ginger (Zingiber officinale)	Gingerols, shogaols, paradols	Anti-inflammatory, antioxidant, antiemetic, cardioprotective
Chamomile (Matricaria chamomilla)	Apigenin, flavonoids, terpenoids	Anxiolytic, sedative, gastrointestinal relief
Lavender (Lavandula angustifolia)	Linalool, linalyl acetate, coumarins	Anxiolytic, sedative, antimicrobial
Garlic (Allium	Allicin, sulfur compounds,	Antimicrobial, antihypertensive,
sativum)	flavonoids	lipid-lowering, anticancer
Turmeric (Curcuma longa)	Curcumin, curcuminoids	Anti-inflammatory, antioxidant, anticancer

IJST www.ijstjournal.com 115

International Journal of Science and Technology (IJST)

ISSN: 3049-1118, Volume- 2, Issue- 3 (Jul – Sep 2025)

Lemon Balm (Melissa officinalis)	Rosmarinic acid, flavonoids, terpenes	Anxiolytic, neuroprotective, sedative
Thyme (Thymus vulgaris)	Thymol, carvacrol, flavonoids	Antibacterial, antifungal, immune-boosting
Cilantro (Coriandrum sativum)	Linalool, coumarins, polyphenols	Antioxidant, hepatoprotective, detoxifying
Basil (Ocimum sanctum)	Eugenol, rosmarinic acid, ursolic acid	Antidiabetic, adaptogenic, immunomodulatory
St. John's Wort (Hypericum perforatum)	Hypericin, hyperforin	Antidepressant, anxiolytic, mood stabilizer
Dandelion (<i>Taraxacum</i> officinale)	Taraxasterol, sesquiterpene lactones	Hepatoprotective, diuretic, antioxidant

Aloe Vera: Nature's Soothing Balm

Aloe vera (*Aloe barbadensis Miller*), a succulent of the Liliaceae family, has been widely used in traditional medicine. Its gel contains over 200 bioactive compounds, including vitamins A, C, E, and B12, folic acid, minerals, amino acids, and polysaccharides such as acemannan (Sharma et al., 2014). These constituents account for its antioxidant, anti-inflammatory, antimicrobial, and wound-healing properties.

Aloe vera is utilized in the food, cosmetic, and pharmaceutical industries. Beverages, teas, and jams are often enriched with aloe extracts due to their nutritive qualities (Surjushe et al., 2008). In cosmetics, it serves as a hydrating and anti-aging ingredient, while pharmacological studies show its ability to accelerate wound healing through enhanced fibroblast activity and collagen synthesis (Sharma et al., 2014). Clinical research has also demonstrated its benefits in psoriasis, eczema, and diabetes management (Surjushe et al., 2008). However, variability in gel composition and anthraquinone-induced laxative effects limit its safe use in high doses (Ekor, 2014).

Peppermint: Cool Comfort for Body and Mind

Peppermint (*Mentha piperita*), a hybrid of spearmint and watermint, contains menthol, menthone, and rosmarinic acid, which contribute to its aroma and pharmacological activity. It is particularly effective in treating gastrointestinal disorders, including irritable bowel syndrome (IBS), dyspepsia, and bloating. Enteric-coated peppermint oil capsules have shown significant efficacy in relieving IBS symptoms (Cash et al., 2016).

Peppermint oil is also used topically to relieve headaches and muscle pain due to menthol's activation of transient receptor potential (TRP) channels (McKay & Blumberg, 2006).

Aromatherapy studies indicate improved cognitive performance and reduced mental fatigue (Koulivand et al., 2013). Nevertheless, excessive consumption may trigger heartburn or allergic responses (Ekor, 2014).

Ginger: Spicing Up Health

Ginger (*Zingiber officinale*) is widely consumed both as a spice and medicinal agent. Its rhizomes contain gingerols, shogaols, and paradols, compounds known for their potent antioxidant and anti-inflammatory activities (Tavares et al., 2022). Traditionally, it has been used to alleviate nausea, indigestion, and respiratory disorders.

Modern studies confirm its effectiveness in reducing nausea related to chemotherapy, pregnancy, and motion sickness (Marx et al., 2017). Clinical evidence also highlights its role in reducing osteoarthritis symptoms by inhibiting pro-inflammatory enzymes (Tavares et al., 2022). Additionally, ginger has demonstrated anti-obesity, antidiabetic, and cardioprotective potential (Marx et al., 2017).

Chamomile: Tranquility in a Teacup

Chamomile (*Matricaria chamomilla*) is among the most popular herbal teas globally. Its active compounds include apigenin, flavonoids, and terpenoids, which contribute to its calming effects (Srivastava et al., 2010). Traditionally used for gastrointestinal complaints, chamomile also exhibits anxiolytic and sedative properties.

Apigenin interacts with benzodiazepine receptors, thereby reducing anxiety and promoting sleep (Srivastava et al., 2010). Chamomile also supports wound healing and reduces inflammation in dermatological applications (Srivastava et al., 2010).

Lavender: Serenity and Healing

Lavender (*Lavandula angustifolia*) contains linalool and linalyl acetate, compounds linked to anxiolytic and sedative effects. Aromatherapy with lavender oil has shown positive results in reducing anxiety, depression, and insomnia (Koulivand et al., 2013).

Topical application of lavender oil provides relief for burns, acne, and eczema due to its antimicrobial and anti-inflammatory actions. However, cases of skin irritation in sensitive individuals have been reported (Koulivand et al., 2013).

Garlic: Flavorful Guardian of Health

Garlic (*Allium sativum*) is valued for its sulfur compounds, particularly allicin, which contribute to its strong odor and therapeutic effects. It has demonstrated broad antimicrobial and cardioprotective properties (Bayan et al., 2014).

Meta-analyses indicate garlic supplementation reduces cholesterol and blood pressure, lowering cardiovascular risk (Ried et al., 2013). Garlic extracts also exhibit anticancer effects by modulating carcinogen metabolism and inducing apoptosis (Bayan et al., 2014). Side effects such as gastrointestinal discomfort and odor may limit compliance.

Turmeric: The Golden Spice

Turmeric (*Curcuma longa*) has long been a cornerstone of Ayurveda. Its primary bioactive compound, curcumin, possesses strong antioxidant and anti-inflammatory effects, primarily through inhibition of NF-κB signaling (Hewlings & Kalman, 2017).

Clinical studies have shown turmeric's efficacy in arthritis, metabolic syndrome, and Alzheimer's disease (Salehi et al., 2019). Furthermore, curcumin exhibits anticancer properties by suppressing tumor proliferation and angiogenesis. However, its poor bioavailability requires formulation with enhancers such as piperine (Hewlings & Kalman, 2017).

Lemon Balm, Thyme, Cilantro, Basil, St. John's Wort, and Dandelion

Lemon balm (*Melissa officinalis*) demonstrates anxiolytic and cognitive-enhancing properties (Cases et al., 2011). Thyme (*Thymus vulgaris*), rich in thymol and carvacrol, shows antimicrobial and immune-supportive activity (Horváth & Acs, 2015). Cilantro (*Coriandrum sativum*) contributes antioxidant, hepatoprotective, and detoxifying effects (Al-Snafi, 2016). Basil (*Ocimum sanctum* or Tulsi) is widely used in Ayurveda for antidiabetic, adaptogenic, and immunomodulatory effects (Jamshidi & Cohen, 2017). St. John's Wort (*Hypericum perforatum*) has proven efficacy in treating mild to moderate depression (Ng et al., 2017). Dandelion (*Taraxacum officinale*) supports liver detoxification and functions as a diuretic and antioxidant (Chatterjee & Saluja, 2021).

Table 2. Therapeutic Applications of Selected Herbal Medicines with Supporting Evidence

Herb	Primary Therapeutic Uses	Supporting Evidence
Aloe vera	Wound healing, psoriasis, diabetes management	Sharma et al., 2014; Surjushe et al., 2008
Peppermint	Irritable bowel syndrome, dyspepsia, headaches	Cash et al., 2016; McKay & Blumberg, 2006
Ginger	Nausea, osteoarthritis, metabolic disorders	Tavares et al., 2022; Marx et al., 2017
Chamomile	Anxiety, insomnia, digestive disorders	Srivastava et al., 2010
Lavender	Anxiety, depression, insomnia, skin conditions	Koulivand et al., 2013
Garlic	Cardiovascular disease, infections, cancer prevention	Bayan et al., 2014; Ried et al., 2013
Turmeric	Arthritis, cancer prevention, neuroprotection	Hewlings & Kalman, 2017; Salehi et al., 2019
Lemon Balm	Anxiety, sleep disorders, cognition	Cases et al., 2011
Thyme	Respiratory infections, oral health, immunity	Horváth & Acs, 2015

International Journal of Science and Technology (IJST)

ISSN: 3049-1118, Volume- 2, Issue- 3 (Jul – Sep 2025)

Cilantro	Detoxification, liver health	Al-Snafi, 2016
Basil (Tulsi)	Stress, diabetes, immune regulation	Jamshidi & Cohen, 2017
St. John's Wort	Mild-to-moderate depression	Ng et al., 2017
Dandelion	Liver detoxification, diuretic, antioxidant	Chatterjee & Saluja, 2021

Discussion

The evidence reviewed highlights the wide therapeutic spectrum of herbal medicines. Aloe vera, peppermint, and ginger show significant efficacy in gastrointestinal and anti-inflammatory disorders, while chamomile, lavender, and lemon balm provide relief from anxiety and sleep disturbances. Garlic and turmeric offer strong support for cardiovascular and anticancer benefits, whereas basil, cilantro, and thyme are recognized for their antioxidant and immune-enhancing properties. St. John's Wort demonstrates notable psychiatric applications, and dandelion supports detoxification and liver function.

Despite these promising findings, significant challenges remain. Variability in chemical composition due to soil, climate, and processing influences consistency (Wang et al., 2009). Lack of standardized dosages and limited large-scale randomized controlled trials further hinder integration into evidence-based medicine (Ekor, 2014). Additionally, safety concerns such as herb-drug interactions—particularly with St. John's Wort—must be addressed (Ng et al., 2017).

Future research should prioritize standardized formulations, rigorous quality control, and clinical investigations that integrate traditional knowledge with modern pharmacological approaches. Strengthening the evidence base through randomized controlled trials will facilitate broader acceptance of herbal medicine.

Conclusion

Herbal medicines, deeply rooted in traditional systems of healing, continue to offer valuable therapeutic benefits. From Aloe vera's wound-healing activity to turmeric's anti-inflammatory and anticancer potential, these botanicals provide holistic health solutions. Scientific research has validated many traditional claims, but global acceptance requires addressing challenges such as standardization, safety profiling, and clinical validation. With increasing consumer demand and advances in phytopharmaceutical science, herbal remedies are poised to play a greater role in integrative and preventive healthcare.

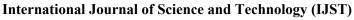
References

1. Al-Snafi, A. E. (2016). The pharmacological activities of *Coriandrum sativum*—A review. *IOSR Journal of Pharmacy*, 6(7), 17–42.

- 2. Apaydin, E. A., Maher, A. R., Shanman, R., Booth, M. S., Miles, J. N. V., Sorbero, M. E., & Hempel, S. (2016). A systematic review of St. John's wort for major depressive disorder. *Systematic Reviews*, *5*(1), 148. https://doi.org/10.1186/s13643-016-0325-2
- 3. Bayan, L., Koulivand, P. H., & Gorji, A. (2014). Garlic: A review of potential therapeutic effects. *Avicenna Journal of Phytomedicine*, 4(1), 1–14.
- 4. Cases, J., Ibarra, A., Feuillère, N., Roller, M., & Sukkar, S. G. (2011). Pilot trial of *Melissa officinalis* L. leaf extract in the treatment of volunteers with mild-to-moderate anxiety disorders and sleep disturbances. *Mediterranean Journal of Nutrition and Metabolism*, 4(3), 211–218. https://doi.org/10.1007/s12349-011-0057-2
- 5. Cash, B. D., Epstein, M. S., & Shah, S. M. (2016). A novel delivery system of peppermint oil is an effective therapy for irritable bowel syndrome symptoms. *Digestive Diseases and Sciences*, 61(2), 560–571. https://doi.org/10.1007/s10620-015-3858-7
- 6. Chatterjee, S., & Saluja, R. (2021). Dandelion: Phytochemistry and clinical potential. *Journal of Dietary Supplements*, 18(3), 284–299. https://doi.org/10.1080/19390211.2020.1747424
- 7. Cohen, M. M. (2014). Tulsi—*Ocimum sanctum*: A herb for all reasons. *Journal of Ayurveda and Integrative Medicine*, 5(4), 251–259. https://doi.org/10.4103/0975-9476.146554
- 8. Ekor, M. (2014). The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. *Frontiers in Pharmacology*, *4*, 177. https://doi.org/10.3389/fphar.2013.00177
- 9. Hewlings, S. J., & Kalman, D. S. (2017). Curcumin: A review of its effects on human health. *Foods*, 6(10), 92. https://doi.org/10.3390/foods6100092
- 10. Horváth, G., & Acs, K. (2015). Essential oils in the treatment of respiratory tract diseases highlighting their role in bacterial infections and their anti-inflammatory action: A review. *Flavour and Fragrance Journal*, 30(5), 331–341. https://doi.org/10.1002/ffj.3252
- 11. Jamshidi, N., & Cohen, M. M. (2017). The clinical efficacy and safety of Tulsi in humans: A systematic review of the literature. *Evidence-Based Complementary and Alternative Medicine*, 2017, 9217567. https://doi.org/10.1155/2017/9217567
- 12. Koulivand, P. H., Khaleghi Ghadiri, M., & Gorji, A. (2013). Lavender and the nervous system. *Evidence-Based Complementary and Alternative Medicine*, 2013, 681304. https://doi.org/10.1155/2013/681304
- 13. Martinez, M., Poirrier, P., Chamy, R., Prüfer, D., Schulze-Gronover, C., Jorquera, L., & Ruiz, G. (2015). *Taraxacum officinale* and related species—An ethnopharmacological review and its potential as a commercial medicinal plant.

IJST www.ijstjournal.com 120

International Journal of Science and Technology (IJST)



ISSN: 3049-1118, Volume- 2, Issue- 3 (Jul – Sep 2025)

Journal of Ethnopharmacology, 169, 244–262. https://doi.org/10.1016/j.jep.2015.03.067

- 14. Marx, W., McCarthy, A. L., Ried, K., McKavanagh, D., Vitetta, L., Sali, A., & Isenring, E. (2017). Ginger—Mechanism of action in chemotherapy-induced nausea and vomiting: A review. *Critical Reviews in Food Science and Nutrition*, *57*(1), 141–146. https://doi.org/10.1080/10408398.2013.865590
- 15. McKay, D. L., & Blumberg, J. B. (2006). A review of the bioactivity and potential health benefits of peppermint tea (*Mentha piperita* L.). *Phytotherapy Research*, 20(8), 619–633. https://doi.org/10.1002/ptr.1936
- 16. Nagoor Meeran, M. F., Javed, H., Al Taee, H., Azimullah, S., Ojha, S. K., & Goyal, S. N. (2017). Pharmacological properties and molecular mechanisms of thymol: Prospects for its therapeutic potential and pharmaceutical development. *Frontiers in Pharmacology*, 8, 380. https://doi.org/10.3389/fphar.2017.00380
- 17. Ng, Q. X., Venkatanarayanan, N., & Ho, C. Y. X. (2017). Clinical use of *Hypericum perforatum* (St John's Wort) in depression: A meta-analysis. *Journal of Affective Disorders*, 210, 211–221. https://doi.org/10.1016/j.jad.2016.12.048
- 18. Pan, S. Y., Zhou, S. F., Gao, S. H., Yu, Z. L., Zhang, S. F., Tang, M. K., ... & Ko, K. M. (2013). New perspectives on how to discover drugs from herbal medicines: CAM's outstanding contribution to modern therapeutics. *Evidence-Based Complementary and Alternative Medicine*, 2013, 627375. https://doi.org/10.1155/2013/627375
- 19. Ried, K., Toben, C., & Fakler, P. (2013). Effect of garlic on serum lipids: An updated meta-analysis. *Nutrition Reviews*, 71(5), 282–299. https://doi.org/10.1111/nure.12012
- 20. Sahib, N. G., Anwar, F., Gilani, A. H., Hamid, A. A., Saari, N., & Alkharfy, K. M. (2013). Coriander (*Coriandrum sativum* L.): A potential source of high-value components for functional foods and nutraceuticals—A review. *Phytotherapy Research*, 27(10), 1439–1456. https://doi.org/10.1002/ptr.4897
- 21. Salehi, B., Stojanović-Radić, Z., Matejić, J., Sharifi-Rad, M., Anil Kumar, N. V., Martins, N., & Sharifi-Rad, J. (2019). The therapeutic potential of curcumin: A review of clinical trials. *European Journal of Medicinal Chemistry*, 163, 527–545. https://doi.org/10.1016/j.ejmech.2018.12.016
- 22. Sharma, P., Kharkwal, A. C., Kharkwal, H., Abdin, M. Z., & Varma, A. (2014). A review on pharmacological properties of Aloe vera. *International Journal of Pharmaceutical Sciences Review and Research*, 29(2), 31–37.
- 23. Srivastava, J. K., Shankar, E., & Gupta, S. (2010). Chamomile: A herbal medicine of the past with a bright future. *Molecular Medicine Reports*, *3*(6), 895–901. https://doi.org/10.3892/mmr.2010.377
- 24. Surjushe, A., Vasani, R., & Saple, D. G. (2008). Aloe vera: A short review. *Indian Journal of Dermatology*, 53(4), 163–166. https://doi.org/10.4103/0019-5154.44785

IJST www.ijstjournal.com 121

- 25. Tavares, L., Smaoui, S., Pinilla, C. M. B., & Junior, M. R. M. (2022). Ginger: A systematic review of clinical trials and encapsulation advances. *Food & Function*, 13(3), 1078–1091. https://doi.org/10.1039/D1FO03485K
- 26. Wang, J., van der Heijden, R., Spruit, S., Hankermeier, T., Chan, K., & van der Greef, J. (2009). Quality and safety of Chinese herbal medicines guided by a systems biology perspective. *Journal of Ethnopharmacology*, 126(1), 31–41. https://doi.org/10.1016/j.jep.2009.07.039
- 27. World Health Organization. (2013). *WHO traditional medicine strategy: 2014–2023*. World Health Organization. https://apps.who.int/iris/handle/10665/92455
- 28. Yuan, H., Ma, Q., Ye, L., & Piao, G. (2016). The traditional medicine and modern medicine from natural products. *Molecules*, 21(5), 559. https://doi.org/10.3390/molecules21050559